



















## Analogs

- Even without knowledge concerning the structure of molecular target, rational development of analogs with considerable better properties:
  - activity;
  - selectivity;
  - Physicochemical properties;
  - Drug metabolism;
  - toxicity;
- Additionally, studies on analogs allows circumvention of patent rights.











## Isosteric compounds

• Grimm (1925):

"Atoms anywhere up to four places in the periodic system before an inert gas change their properties by uniting with one to four hydrogen atoms, in such a manner that the resulting combinations behave like pseudoatoms, which are similar to elements in the groups one to four places respectively, to their right."

| CH | NH     | OH     | FH     | _        |
|----|--------|--------|--------|----------|
|    | $CH_2$ | $NH_2$ | $OH_2$ | $FH_2^+$ |
|    |        | $CH_3$ | $NH_3$ | $OH_3^+$ |
|    |        |        | $CH_4$ | $NH_4^+$ |

|             | mayer:                      |               | <i>.</i>   |                 |                 |  |
|-------------|-----------------------------|---------------|------------|-----------------|-----------------|--|
| Cor<br>vale | npounds<br>nce elect        | or groups     | of atoms v | vith the sam    | ie number of    |  |
| vare        |                             |               |            |                 |                 |  |
|             |                             |               |            |                 |                 |  |
|             | no. of peripheral electrons |               |            |                 |                 |  |
|             | 4                           | 5             | 6          | 7               | 8               |  |
| _           | $N^+$                       | Р             | S          | Cl              | CIH             |  |
|             | $\mathbf{P}^+$              | As            | Se         | Br              | BrH             |  |
|             | S <sup>+</sup>              | $\mathbf{Sb}$ | Te         | I               | IH              |  |
|             | $As^+$                      |               | PH         | SH              | $SH_2$          |  |
|             | Sh                          |               |            | PH <sub>2</sub> | PH <sub>2</sub> |  |



| H – F replacement<br>Fluorine atom has similar size to hydrogen atom but considerably diffe<br>properties. |      |       |       |                 |                 |  |
|------------------------------------------------------------------------------------------------------------|------|-------|-------|-----------------|-----------------|--|
|                                                                                                            | н    | F     | CI    | CH <sub>3</sub> | CF <sub>3</sub> |  |
| Van der Waalsa<br>diameter                                                                                 | 1.2  | 1.35  | 1.8   | 2               | 2               |  |
| Moleclar refraction 1.03                                                                                   | 0.92 | 6.03  | 5.65  | 5.02            |                 |  |
| Indctive effect                                                                                            | -    | 3.08  | 2.68  | 0.0             | 2.85            |  |
| Resonace effect                                                                                            | 0.0  | -0.34 | -0.15 | -0.13           | 0.19            |  |

















































