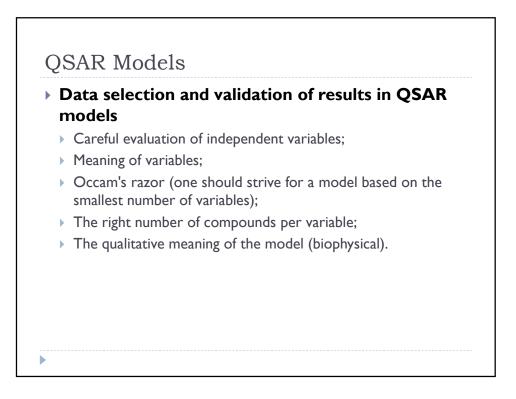
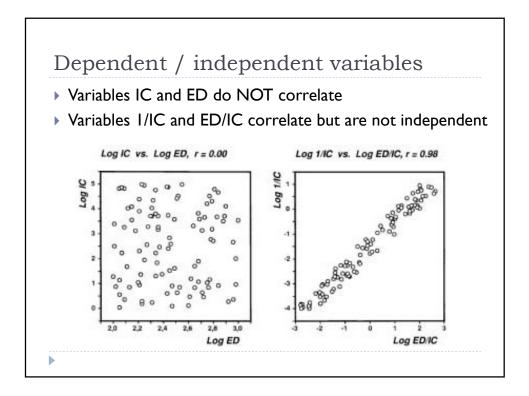
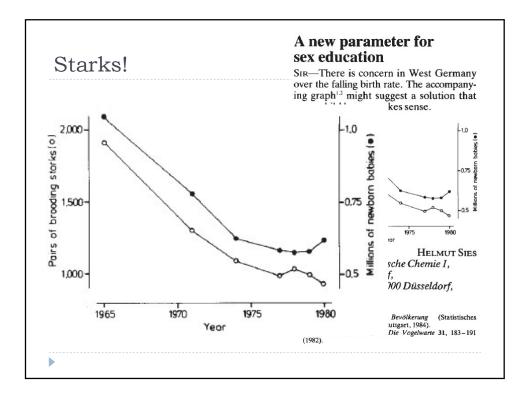
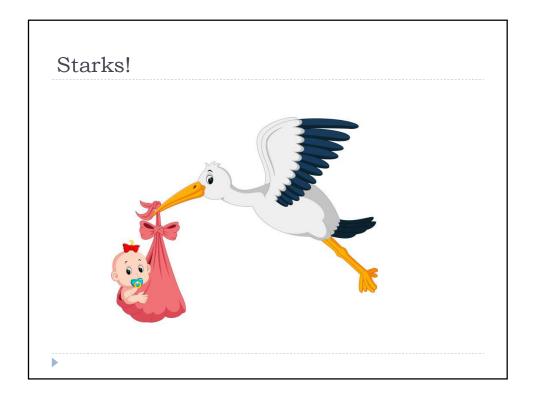
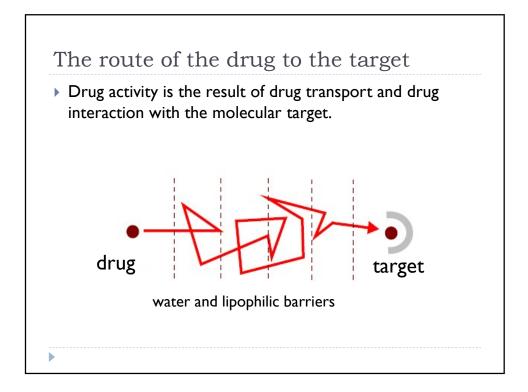

Rational Drug Design lecture 10

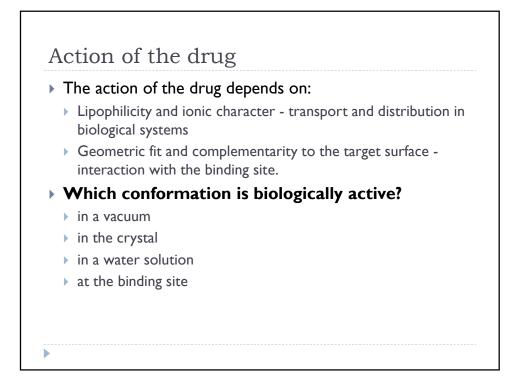

Łukasz Berlicki

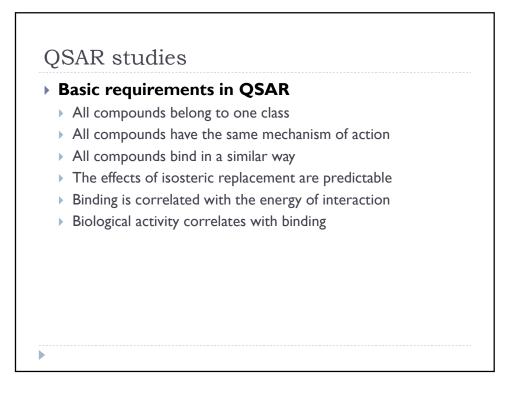


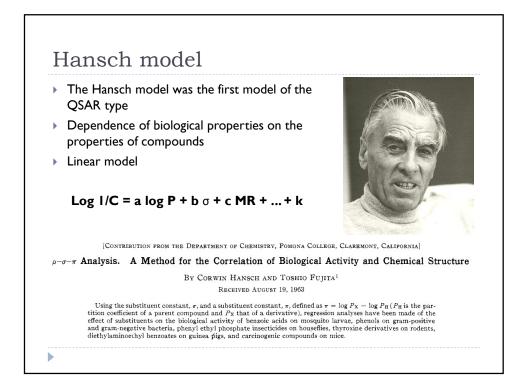


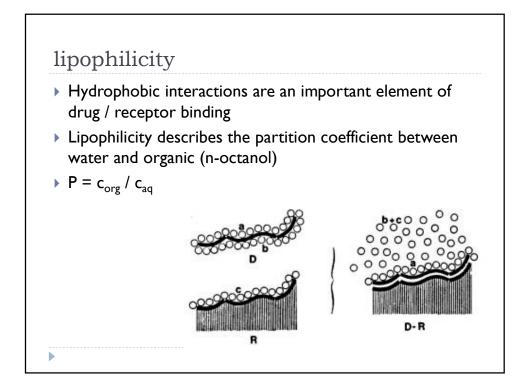


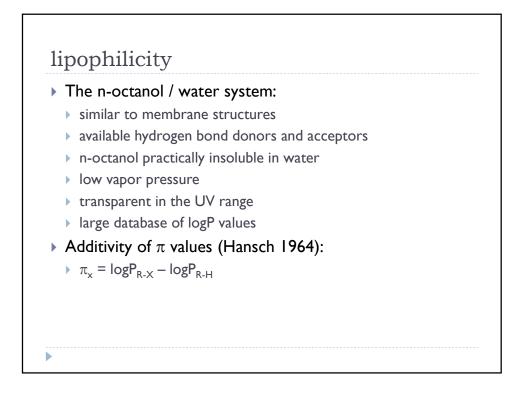




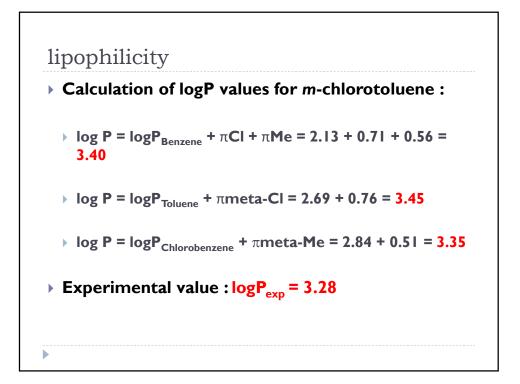


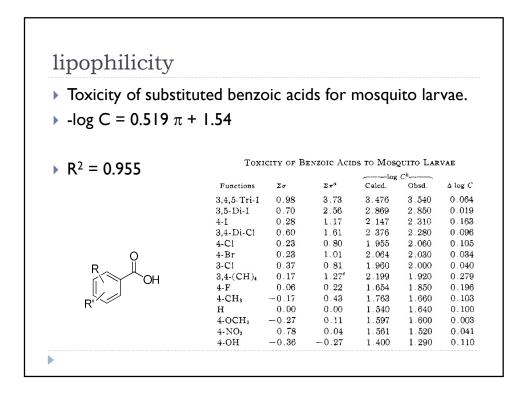


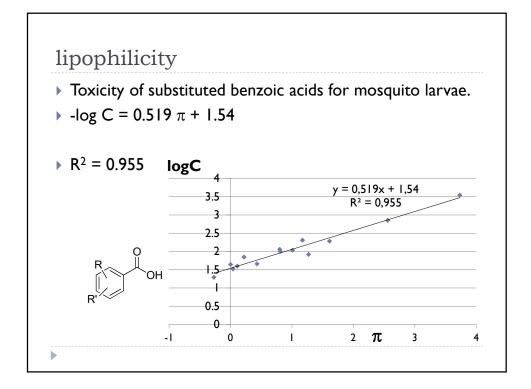


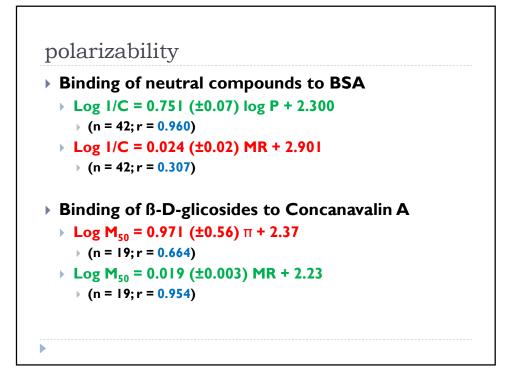


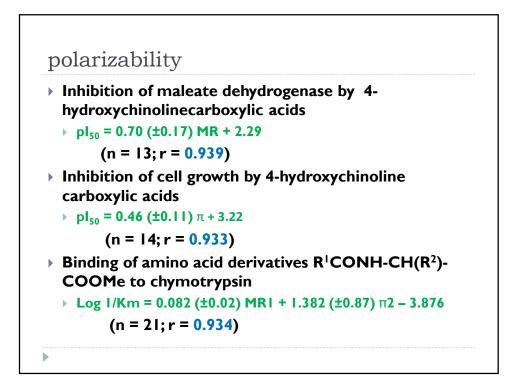
Molecular properties	Oddziaływania
lipophilicity	Hydrophobic interactions
polarizability	Van der Waals interactions
Electron density	lonic bonds, dipole-dipole interactions, hydrogen bonds, charge transfer interactions
topology	Geometric fit, steric hindrance

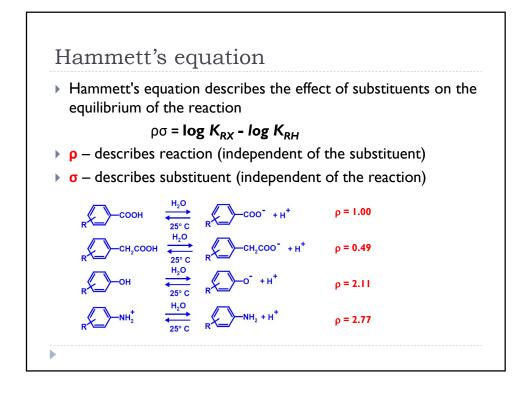


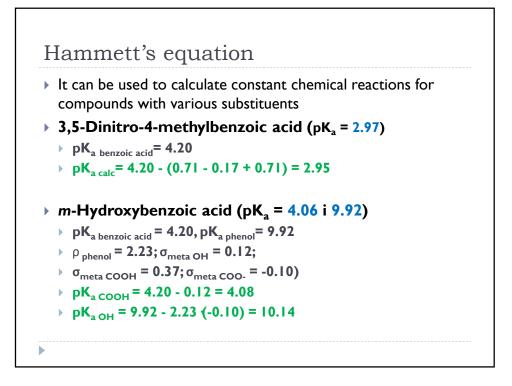


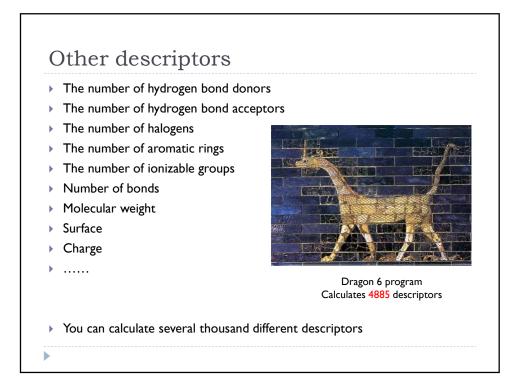

Examples -	carbamates		
R-OCONH ₂	Ρ	Log P	$\Delta \log$ P
methyl	0.22	-0.66	
ethyl	0.70	-0.15	0.51
propyl	2.30	0.36	0.51
butyl	7.1	0.85	0.49
pentyl	22.5	1.35	0.50
hexyl	70.8	1.85	0.50
heptyl	230	2.36	0.51
octyl	700	2.85	0.49

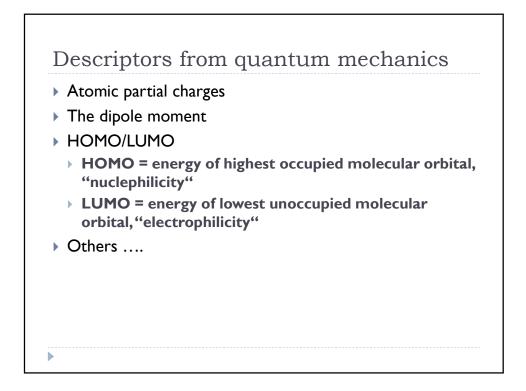

bstituents of b	enzene ring	
R	π_{meta}	π_{para}
н	0.0	0.0
CH₃	0.51	0.52
Br	0.76	0.70
CI	0.94	1.02
ОН	-0.49	-0.61
OCH ₃	0.12	-0.04
NO ₂	0.11	0.24

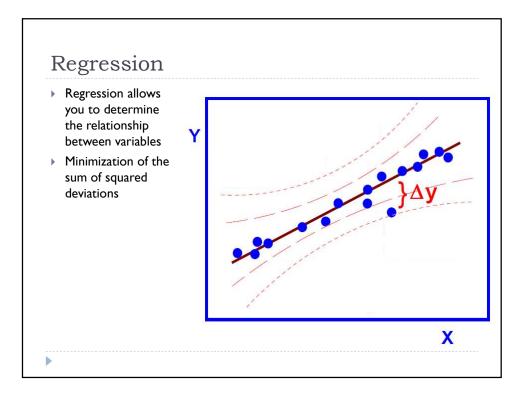


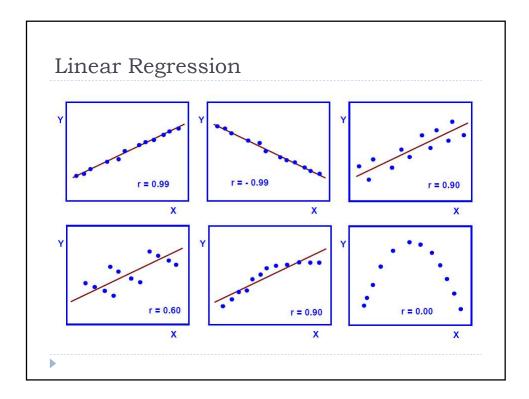


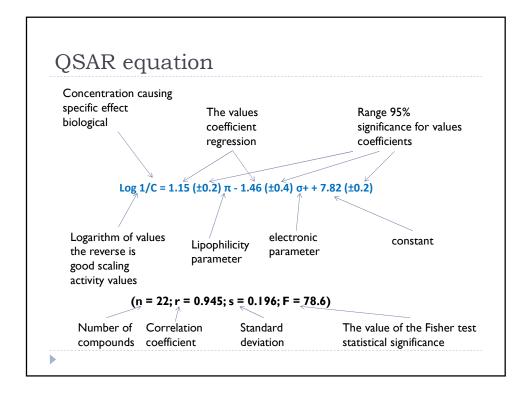

polarizability • Parameters defining the polarizability of a molecule : • Molecular volume (MV): $V_m = \frac{V}{n} = \frac{M}{\rho}$ M - molecular mass, ρ - density • Molar refraction (MR): $R = V_m \frac{n^2 - 1}{n^2 + 2}$ n - refractive index

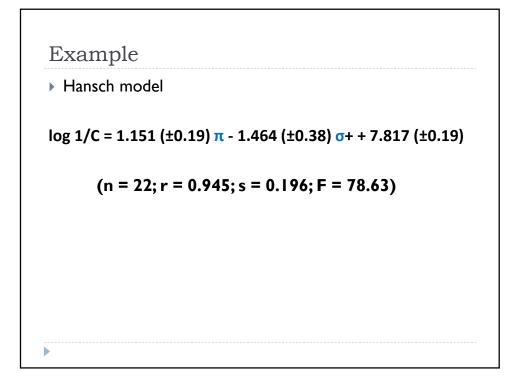


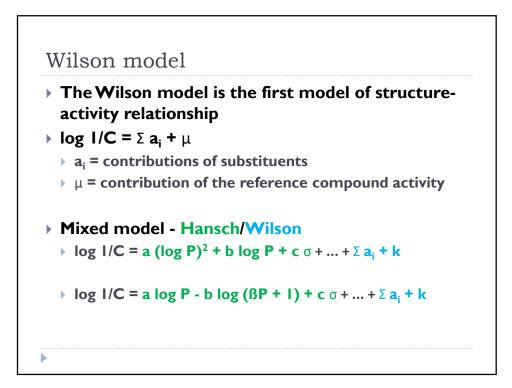


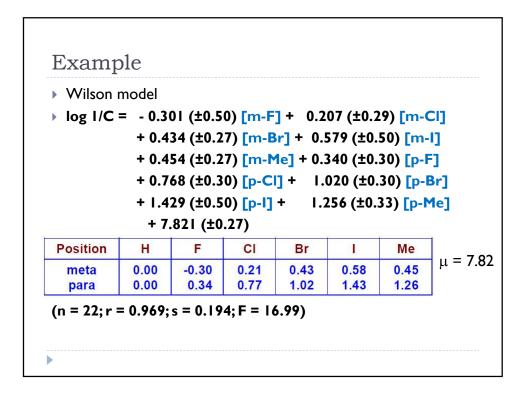



Coefficient of	Substituent	$\sigma_{\scriptscriptstyle m bara}$	$\sigma_{\!_{meta}}$
substituent, σ	-N(CH ₃) ₂	-0.83	-0.211
describes the electron	-NH ₂	-0.66	-0.161
properties of	-OCH3	-0.268	+0.115
functional groups	-OC ₂ H ₅	-0.25	+0.015
The influence of	-CH ₃	-0.170	-0.069
inductive and	-H	0.000	0.000
mesomeric effects on	-F	+0.062	+0.337
the reaction	-Cl	+0.227	+0.373
	-Br	+0.232	+0.393
	-I	+0.276	+0.353
g K_{RX} = Log K _{RH} +ρσ	-CN	+0.66	+0.56
	-NO ₂	+0.778	+0.710



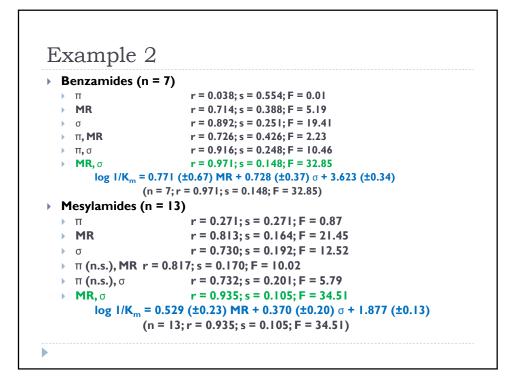




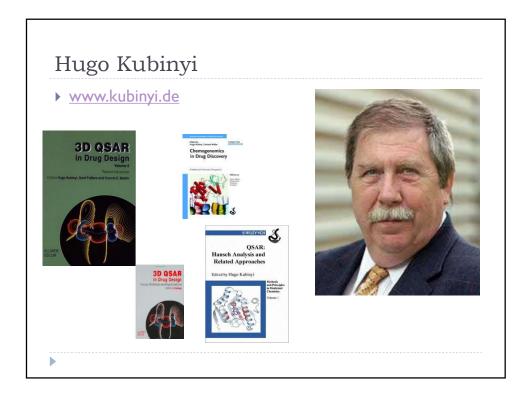


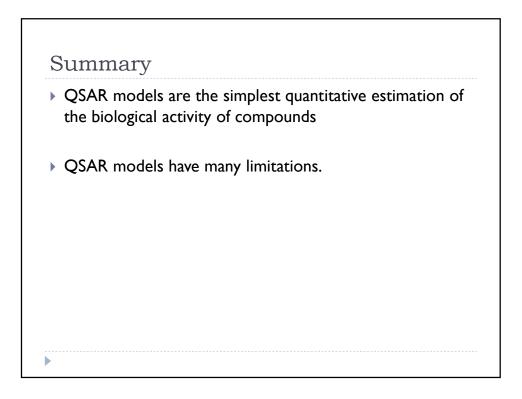
Tromple	meta (X)	para (Y)	log 1/C obsd.	π	σ^{*}
Example	Н	н	7.46	0.00	0.00
	н	F	8.16	0.15	-0.07
Anti-adrenergic activity of	н	CI	8.68	0.70	0.11
c ,	н	Br	8.89	1.02	0.15
dimethyl-phenylethylamine	Н	1	9.25	1.26	0.14
	н	Me	9.30	0.52	-0.31
	F	н	7.52	0.13	0.35
	CI	н	8.16	0.76	0.40
	Br	н	8.30	0.94	0.41
	1	н	8.40	1.15	0.36
	Me	н	8.46	0.51	-0.07
Ŗr ÇH ₃	CI	F	8.19	0.91	0.33
	Br	F	8.57	1.09	0.34
X A L Ń	Me	F	8.82	0.66	-0.14
~~~~СН,	CI	CI	8.89	1.46	0.51
<b>U</b> ₃	Br	CI	8.92	1.64	0.52
	Me	CI	8.96	1.21	0.04
Y X HCI	CI	Br	9.00	1.78	0.55
	Br	Br	9.35	1.96	0.56
	Me	Br	9.22	1.53	0.08
	Me	Me	9.30	1.03	-0.38
	Br	Me	9.52	1.46	0.10






<b>D</b> 1		para	log 1/C	m F	eta- Cl	Br			pa F	ara- Cl	Br		
Example	(X)	(Y)	obs.	r	U	ы	1	Me		CI	ы	1	Me
*	. Н	н	7.46										
Wilson model	н	F Cl	8.16						1				
	н		Br 8.89	8.68						1	1		
Data showing	н												4
•	н	Me	9.25									1	1
substituent positioning.	F	Н	7.52	1									1
	CI	н	8.16	2	1								
	Br	н	8.30			1							
	1	н	8.40			14	1						
	Me	н	8.46					1					
	CI	F	8.19		1			10	1				
	Br	F	8.57			1			1				
	Me F 8.82 1 1												
	CI	CI	8.89		1					1			
	Br	CI	8.92			1				1			
	Me	СІ	8.96					1		1			
	CI	Br	9.00		1						1		
	Br	Br	9.35			1					1		
	Me	Br	9.22					1			1		
	Me	Me	9.30					1					1
	Br	Me	9.52			1							1





	ple 2					
Inhibit	ion of papai	in by glycin	e esters	5		
	R0.					
		ĭ }-x				
		$\checkmark$				
X	R	log 1/K _m	π	MR	σ	1
4-NH ₂	-COC ₆ H ₅	3.58	-1.23	0.54	-0.66	0
4-Me	-COC6H5	4.02	0.56	0.56	-0.17	0
н	-COC6H5	3.77	0.00	0.10	0.00	0
4-CI	-COC6H5	4.00	0.71	0.60	0.23	0
4-F	-COC6H5	3.69	0.14	0.09	0.06	0
	-COC6H5	4.74	-0.28	0.74	0.71	0
3-NO ₂			-0.28	0.74	0.78	0

X	R	log 1/Km	π	MR	σ	I.
4-OH	-SO2Me	2.05	-0.67	0.28	-0.37	1
4-OMe	-SO ₂ Me	2.13	-0.02	0.79	-0.27	1
4-Me	-SO2Me	2.08	0.56	0.56	-0.17	1
3-Me	-SO ₂ Me	2.23	0.56	0.56	-0.07	1
H	-SO2Me	1.79	0.00	0.10	0.00	1
4-F	-SO ₂ Me	1.95	0.14	0.09	0.06	1
3-OMe	-SO ₂ Me	2.29	-0.02	0.79	0.12	1
4-CHO	-SO ₂ Me	2.33	-0.65	0.69	0.42	1
4-CI	-SO ₂ Me	2.38	0.71	0.60	0.23	1
3-F	-SO2Me	1.98	0.14	0.09	0.34	1
4-COMe	-SO ₂ Me	2.57	-0.55	1.12	0.50	1
3-NO2	-SO2Me	2.53	-0.28	0.74	0.71	1
4-NO2	-SO2Me	2.71	-0.28	0.74	0.78	1



All compou	nds (n = 20)
MR	r = 0.154; s = 0.992; F = 0.44
σ	r = 0.250; s = 0.972; F = 1.20
► I	r = 0.931; s = 0.366; F = 117.79
<b>MR,</b> σ	r = 0.259; s = 0.998; F = 0.61
MR, I	r = 0.967; s = 0.263; F = 122.35
σ,Ι	r = 0.977; s = 0.220; F = 179.70
• <b>MR,</b> σ, Ι	r = 0.990; s = 0.148; F = 272.04
$g I/K_m = 0.5$	<b>69 (±0.26) MR + 0.56Ι (±0.19)</b> σ
- 1	922(±0.15)   + 3.743 (±0.17)
(n = 20:	r = 0.990; s = 0.148; F = 272.04)



