Rational Drug Design lecture 12

Łukasz Berlicki

Computer-aided design

- Ligand-based design QSAR and 3D-QSAR
- Structure-based design design based on the structure of molecular target

▶

Key - Lock

• The shape of the ligand must match the molecular target like the key to the lock - **steric effects**.

Key - Lock

- The shape of the ligand must match the molecular target like the key to the lock **steric effects**.
- Ligand must form a network of interactions with the molecular target **electron effects**.

Structures of macromolecules

Protein Data Bank (rcsb.org) – a database that collects macromolecular structures

Protein crystallography

- Protein preparation and purification
- Crystallization
- Collection of diffraction data
- Obtaining an electron density map
- Model matching

b

Inhibition Constant

The inhibition constant is a measure proportional to the binding energy of the ligand to the protein

$$\Delta G = \Delta H - T\Delta S = RT \ln K_i$$

- ΔG Gibbs energy
- ΔH entalphy
- ΔS entropy

K_i in range 10⁻⁶ - 10⁻¹² M, what is related to
 -4 - -17 kcal/mol

Ligand binding

- An important element of the inhibitor enzyme balance is a solvent (water), which also interacts with the ligand.
- Ligand-protein interactions reduce enthalpy of the system.
- All broken ligand-water and waterprotein interactions should be reconstituted in the ligand-protein complex.
- Binding the ligand through the protein results in a change in entropy.

Hydrophobic interactions, van der Waalsa

Hydrogen bonds

b

Hydrogen bonding is one of the most important ligandprotein interactions. с=о...н Hydrogen bonding energy 0 strongly depends on its geometry (distances and angles). N-H...O The binding energy is inversely Distance N-H...O 2.8-3.2 Å proportional to its length Angle N-H...O 150-180° Angle C=O...H 100-180° movie

Hydrogen bonds

b

 Arranging the hydrogen bond donors around the carboxyl group indicates preferences in its geometry.

Hydrogen bonds

- Neutral Hydrogen bonds: 2-6 kJ / mol, increase ligand binding 2-15 fold
- Ionic hydrogen bonds: up to 20 kJ / mol, increase ligand binding to 3,000 times

Hydrogen bonds - examples

• Binding of 2,3-phosphoglyceric acid to hemoglobin

Binding of sulfate to SBP (sulfate binding protein)

Hydrogen bonds

 All donors and acceptors in the aqueous solution form hydrogen bonds with the solvent

Hydrogen bond - example

Binding of ligands to dihydrofolate reductase

• The hydrogen bonding scheme indicates that dihydrofolate binds to the enzyme in a different conformation to methotrexate.

Hydrogen bond - example

b

• Binding of ligands to dihydrofolate reductase

Hydrogen bond - example

Binding of ligands to dihydrofolate reductase

Hydrogen bond

b

Phosphonic thermolysin inhibitors

R	-NH-	-0-	-CH ₂ -
-OH	0.76	660	1.4
-Gly-OH	0.27	230	0.3
-Leu-OH	0.01	9	0.01

Hydrogen bond

Phosphonic thermolysin inhibitors

Hydrogen bond

• Examples of binding differences for C=O and CH₂

Lipophilicity

 The formation of hydrogen bonds in the solvent is an important element of the hydrophobic effect that enhances hydrophobic interactions (van der Waals, π-π, cation-π)

Entropy

- Ligand binding causes a decrease in its entropy due to:
 - Decreasing the freedom of translational movements (x, y, z)
 - Reduce the freedom of rotation (around individual bonds).
 Each single bond (between non-hydrogen atoms) in the ligand reduces binding energy by about 1.0 kcal / mol

It is advantageous to design compounds with low conformational freedom (rigid).

Reducing the conformational freedom

If the conformation of the ligand in the active site is known, it is preferred to design compounds with a stiffened structure and an analogous conformation.

Menin-MLL

- Menin is a tumor suppressor protein
- Menin interacts specifically with the MLL protein
- Blocking the effects of menin-MLL reduces the oncogenic properties of the fusion proteins interacting with MLL

Menin-MLL

- The crystal structure of the MLL protein fragment with menin shows the active conformation of this peptide.
- The C-terminal residue interacts with the arginine side chain

Menin-MLL

Stiffening of the peptide by cyclization

Menin-MLL

Stiffening of the peptide by cyclization

Water molecule in the active site

Introduction to the compound of the functional group, which replaces the water molecule in the active site, results in a beneficial enthalpy effect (increased interaction energy) and entropy.

Water molecule in the active site

 If a newly introduced functional group reproduces the effects of the replaced water molecule, we will obtain a compound with higher activity.

PTP (protein tyrosine phosphatase)

- Protein tyrosine phosphatase (PTP) an enzyme that controls the signaling by dephosphorylation of protein tyrosyl residues.
- PTP IB inhibitors can be effective drugs of type 2 diabetes and obesity.

PTP (protein tyrosine phosphatase)

PO₃H₂

 PO_3H_2

- The phosphonic group is bound by 8 hydrogen bonds
- Hydrogen bonding also forms one of the fluorine atoms

PTP (protein tyrosine phosphatase)

• Replacing one molecule of water bound in the active site by the -OH group of the inhibitor increases its activity.

PTP (protein tyrosine phosphatase)

• Replacing the water molecule

Fragment-based drug design

 Fragment-based drug design – joining fragments that interact with different parts of the active site leads to compounds with high activity.

Stromelysin inhibitors

Stromelysin is a metal-dependent protease with a Zn2 + ion in the active site

Stromelysin inhibitors

b

 The structure of the complex with 2 fragments (on the left) and a new inhibitor (on the right)

Summary

- Knowledge of the molecular target structure significantly increases the efficiency of ligand design.
- Structural and electronic matching is necessary.
- The creation of a specific set of protein-inhibitor interactions gives a chance to obtain a highly active and specific inhibitor.

▶